Identified Particle Jet Modifications in AuAu Collisions at PHENIX

Anne Sickles June 20, 2005 Stony Brook

Probing the Medium with Jets

- jets are produced early and probe entire lifetime of medium
- jets are a calibrated probe
- what happens to the radiated energy?
- is the hadronization process affected by the medium?

Baryons are Weird

Particle identification is crucial for understanding particle production at intermediate p_{T}

Where do the Extra Baryons Come From?

N_{coll} scaling jets source?

Large baryon v₂...
soft source
boosted to
intermediate p_T?

Recombination

- quarks close together in phase space recombine to form observed hadrons
- recombining quarks come from either jet or thermal source, but all models predict a significant number of intermediate p_T particles come from non-jet sources
- predicted to dominate where
 ^{10⁵}
 quark p_T spectrum is
 exponential

Greco, Ko & Levai Fries et al. Hwa & Yang

provides simple, natural explanation for baryon and meson differences

Varieties of Recombination

recombination
could be the way
of understanding
how the medium
modifies
fragmentation

recombination from correlated source

impact on yield depends on relative importance of fragmentation & recombination

Two Particle Jet Correlations

find jets statistically

West

trigger at high p_⊤

East

method finds biased high z jets

Subtracting the Underlying Event

non-flow angular

correlations → **jets!**

v₂ values measured separately PHENIX PRL 91 (2003) 182301

Background Normalization

no fitting or assumptions about signal shape

- combinatoric level -|z|
 determined independently
 from mixed events
 - mixed events have the same average trigger and partner rates as real events, but not the additional signal pairs

trigger: $2.5 < p_T < 4.0$ GeV/c

Multiplicity Correlations

- real correlations due to higher multiplicity in more central edge of the centrality bin → more pairs
 - will exist in any finite size centrality bin
- correction determined via a Glauber model based MC
 - create pairs whose only correlation is centrality and compare to combinatoric rates
 - depends on pT, particle species, and centrality
 - ~0.2% of background level in central AuAu collisions
 - ~25% in peripheral AuAu collisions

Are the Baryons from

integrate partners/trigger above combinatoric level for both near and far sides

no significant difference between trigger baryons and mesons → baryons are from jets

perhaps jet source is diluted in most central for trigger baryons

away side yields confirm jet source for baryons

trigger: 2.5 < pT < 4.0GeV/c partner: 1.7 < pT < 2.5 GeV/c

ets are strongly modified in AuAu collisions compared to pp

Thermal Recombination?

upper limit on thermal baryon source from measured antiproton/pion ratio

data inconsistent with centrality dependence and absolute value of thermal source limit → excess baryons must come from jets

What's Going On?

Recombination from a correlated source "wake" effect?

→correlations amplified according to valence quark number

agrees with present data

correlations with both particles identified will provide a stronger test

trigger: 2.5 < pT < 4.0GeV/c partner: 1.7 < pT < 2.5 GeV/c Fries, Bass & Mueller

PRL 94 (2005) 122301

Energy Loss

- AuAu jets are strongly modified; don't come purely from the surface
 - trigger particle
 must loose energy,
 which could
 increase the
 partner yield
 relative to pp

Near Side Partner Spectra

- corrected to full jet yield according to symmetric fragmentation in $\Delta\Phi$ & $\Delta\eta$
- partner spectrum flatter, as expected from jet source
- partner spectrum soften in more central collisions

no trigger dependence

Jet Broadening in n?

inv. slope (GeV/c)

- a wider jet cone in Δη would further soften central AuAu partners
- what would it mean for the jet partners be softer than inclusive hadrons?

Identified Partners

trigger: 2.5 < pT < 4.0GeV/c

partner baryon distributions have less asymmetry

Jet Partner Ratios

- near side baryon to meson consistent with pp baryon to meson ratio
- far side has higher ratio--medium modified jet fragmentation?
 - no significant centrality dependence

trigger: 2.5 < pT < 4.0GeV/c

partner: I.0 < pT < 2.5GeV/c

Conclusions

- baryons at intermediate p_T are from jets
 - possible dilution from non-jet source in the most central collisions
- jet fragmentation is modified by the medium
 - richer in baryons
 - more lower p_T partners
 - strong modification even on near side--surface emission?

What's Next?

- higher statistics measurements
 - is the dilution of the baryon triggered yields real?
- Identify both particles
 - stronger test of recombination scenarios
- higher and lower pT identified triggers
 - changes in the yields where the p/π ratio is changing